Automatic Verification of Cryptographic
Protocols with SETHEO

Johann Schumann

Institut fur Informatik
Technische Universitat Miunchen
D-80290 Minchen, Germany
gchumann@informatik.tu-muenchen.de

Abstract. In this paper, we describe, how the automated theorem prover
SETHEO is used for automatic verification of safety properties of crypto-
graphic protocols. The protocols and their properties are specified using
the so-called BAN logic, a multi-sorted modal logic capable of expressing
beliefs about secure communication. The resulting formulas and inference
rules are transformed into first order predicate logic and processed by the
prover SETHEO. Proofs found by SETHEO are then automatically con-
verted into a human-readable form. Experiments with several well-known
protocols (Kerberos, Secure RPC handshake, and CCITT509) revealed
very good results: the required properties of the protocols (as described
in the literature) could be shown automatically within a few seconds of
run-time.

1 Introduction

Cryptographic protocols are used when secure services are to be provided be-
tween two or more partners. Typical examples are banking applications or ex-
change of user information e.g., during a login procedure.

Due to the dramatic increase in network applications (e.g., WWW, Java)
during the last few years, cryptographic protocols have gained more and more
importance. Safety and security of communication has thus become very impor-
tant issues (cf. [17]). Providing secure services is the key feature of cryptographic
protocols. If, however, a protocol is designed not flawless, the protocol may fail
to do so. Intruders then can supply false messages to the protocol, causing severe
security problems.

Such security flaws are in general very hard to detect. Therefore, many meth-
ods and tools to analyze the behaviour of a cryptographic protocol have been
studied and developed (for an overview see e.g. [6, 15]). Methods for verification
(based on logic) have come up since about 1989. The most well-known approach
in that area has been presented in [3, 4]. The authors have proposed a logic of
believe (hence called BAN logic after the initials of the authors), which is capa-
ble of expressing the behaviour of a protocol and with which safety and security
properties can be specificed. With the help of specific inference rules, the validity
of these requirements can be shown.



Since then, many approaches, based on that work, have been made. Several
problems with the BAN logic (e.g., with respect to modelling intruders), and a
missing denotational semantics have led to a number of extensions, e.g. GNY
[8], SVO [19], AT [1], or AUTLOG [10]. In these approaches, a slightly extended

logic with additional (or modified) inference rules is defined.

Reasoning with the BAN logic (or its extensions) has been done manually
in most cases. Only quite recently, tools have been developed to perform such
proofs in a computer-supported way either interactively (e.g.,[5]), or automatic
(e.g. [2] or [10]). With most examples mentioned in the literature, the run-times
for finding the proofs are considerable.

We apply the automated theorem prover SETHEO to automatically verify
theorems formulated in the BAN logic. Although one of the more advanced logics
(e.g. GNY) could have been used, the work reported in this paper has been made
to demonstrate SETHEQ’s ability to efficiently cope with proof tasks arising
in the area of analyzing cryptographic protocols. This also means that with our
application we can only prove properties which can be shown within the original
BAN logic. No attempts have been made to correct any deficiencies of that logic.

Three approaches to support reasoning in the BAN logic or extensions thereof
have been reported in the literature. [10] has extended the logic for better ways
of dealing with intruders. The authors have implemented a PROLOG program
which can (in a forward-chaining reasoning process) automatically show many
properties. With this approach, however, the size of the resulting search space
is huge!. [2], on the other hand, transforms a specification of a cryptographic
protocol given in the specification language ICL, into a formula of the GNY
logic and uses the higher-order theorem prover HOL [9] to perform automatic
reasoning. The approach described in [5] is based on the BAN logic. The authors
transform BAN formulas into first-order formulas (in a similar way as in our
approach) and use the EVES system to interactively perform reasoning. In order
to increase the level of automatic processing, they use a forward-chaining way
of reasoning. Qur approach, on the other hand performs automatic reasoning in
the backward-chaining, goal-oriented way of the prover SETHEO.

The paper proceeds as follows: first, we give a short introduction into the
BAN logic, its notation and inference rules. The main section of this paper fo-
cuses the transformation necessary to convert an (idealized) protocol, the safety
requirements and the inference rules into First Order Predicate Logic, the input
language of SETHEQ. For this paper, we assume the reader to be familiar with
the basic notions of the Model Elimination Calculus [13] and SETHEOQO. For
details on SETHEO see e.g., [12, 11, 7, 16].

Then, we present the results of experiments with some well-known protocols
and show an automatically generated proof. We conclude by summarizing our
approach, discussing problems of this approach, and presenting ongoing and
future work.

1« . and it takes too long if there are too many rules.” [10],pg. 8.



2 The BAN logic

The goal of an authentication protocol is that, after a protocol run has taken
place, “the principals should be entitled to believe that they are communicating
with each other, and not with intruders.”? The principals can be persons, other
computers, or even services.

The BAN logic (“Burrows, Abadi, Needham” [3]) has been developed to
formalize such beliefs and to allow to draw inferences within that logic. The
BAN logic 1s a multi-sorted modal logic. The basic sorts of objects are: principals,
encryption keys, and formulas.

In the following, we give a short informal introduction into the basics of that
logic. However, we only describe the syntax and inference rules of BAN and
do not focus on the (informal or formal) semantics. Furthermore, we adhere to
the notations, found in [3]. Principals are denoted by A, B, P, S and pA, pB, pS,
formulas as X,V encryption keys (shared between two principals) are written
as Kgp, Kgs, Kpg. Public keys are K,, K, K., whereas Ka_l, ... denote the cor-
responding secret keys. Nounces (e.g., time-stamps) are T, Ty, Tp.

Furthermore, the BAN logic contains a set of operators which may be con-
nected via “A” to construct new formulas. A complete list of operators (and its
representation for SETHEO — see Section 3) is shown in Table 1. A detailed
description of them can be found in [3] or [4]. As an example, two operators
are explained: P believes X (or P|= X) means that principal P believes a

statement X. This also means that P acts as if X was true. P & @ says that
principals P and ) communicate via a shared key K.

Notation in [BAN90]|Sh0rthand|SETHEO ||[BAN90] |SETHEO

P believes X PEX bel(P,X) A, B,S, P a,b,s,p

P sees X PaX sees(P,X) K k

P said X P X said(P,X) Kap kab

P controls X PE X |controls(P,X)|Ka kba

fresh(X) #X fresh(X) Ko kas

K1t - inv(K) Ky kbs

P<I—\>Q - sk(P,Q,K) {Mi,...,M,}|cons(ml,cons(...
{X}x - encr(X,K) cons(mn,nil)...)
= Q - pub (Q,K) {} nil

P I:\ Q - ss(P,Q,K)

<X>y - comb(X,Y)

Table 1. Notation of BAN operators as used in [3], a common short-hand, and the
operators in SETHEO’s input language and SETHEO

® [3], pg- 1.



In [3], a list of logical postulates (or inference rules) is given which define the
BAN logic. The most important inference rules are described in the following:

Message-meaning The message-meaning rule concerns the interpretation of a
message. As soon as a principal P believes that it communicates with some
other principal @ using encrypted messages (with shared keys, public keys,
or shared secret keys), and such a message arrived, we may infer that P
believes that ) has actually sent the message X. In a formal notation we
get (for shared keys):?

PEPEQ Pa{X}k
PE QR X
Nonce-verification Nonces are specific messages generated by a principal.

Their main purpose is to guarantee the freshness of a message. Therefore,
often time-stamps are used as nonces. The nonce-verification rule states that

a message is “recent”, 1.e., that the sender still believes in 1t when the cor-
responding nonce is fresh:

PE #X PE QR X
PEQE X

Jurisdiction This rule states that if P believes that @ has jurisdiction (control)
over X, then P trusts @ on the truth of X*:

PEQE X PEQEX
PEX

Components Several inference rules of the BAN logic concern the “packing”
and “unpacking” of messages which consist of more than one atomic message.
Furthermore, rules exist that a principal can decipher messages, for which
the appropriate keys are known. For a list of these inference rules see [3].

Symmetry of communication Two inference rules (which are not defined in
[3], but used there) define the symmetry of communication via shared keys,
and via shared secrets.

PEQER PEQZR
PEREQ PER=Q

In general, authentication protocols are specified by a finite sequence of mes-
sages which are being transmitted between the principals. Often, such a message
(principal P sends a message to () is written as:

P — @ : message

® For public keys and shared secrets, we obtain similar rules.
* [3], pe. 3.



Within the BAN logic, each message of the protocol is given in an idealized
form. In such an idealized protocol, uncrypted messages are not included. This
means that all messages are of the form {X}x or sequences thereof. As an
example, consider the message A — B : {A, K4 }k,,. This message means that
A sends its own identification plus the shared key Kgp, encrypted with the key
Ky, to principal B. It is idealized as

A— B:{A% Bk,

For a detailed description of the process of idealizing a protocol see [3]. If a
message P — ) : X has been received, the formula @ < X (@ sees X) holds. A
list of such formulas (one for each message) comprises the input specification of
a protocol in BAN.

The theorems we want to prove in general depend on the protocol we are
analyzing. However, there are default requirements for the services an authenti-
cation protocol should provide. These are of the form that the principals (A4 and

B) believe that they properly communicate via a shared key K: AE A & B and
BE A & B, and the principals believe the believes of their respective partners:
BEAEAL B, AEBE AL B.

Example: The Kerberos Protocol. Before we focus on transforming formulas
of the BAN logic into First Order Predicate logic, we present the formalisation
and analysis of a well-known protocol, the Kerberos protocol. This protocol has
also been analysed with our SETHEOQO-based system; the results are shown in
Section 4 and a machine-generated example-proof is given in the Appendix.

The Kerberos protocol establishes a shared key between two principals pA,
pB with the help of an authentication server pS. This protocol has been de-
veloped at MIT within the Athena project. The Kerberos protocol consists of
4 messages, the last three of which are being idealized for the analysis. These
messages are shown in Table 2. With the first message, pA contacts the server
pS, sending its own name and that of the proposed communication partner pB.
pS provides pA in the second message with the session key K, and a certifi-
cate conveying the session key and pA’s identity (encrypted by the key Kps).
The entire message is encrypted by pA’s key K,s. Then, the latter part of the
message is sent from pA to pB, along with a time-stamp (nounce Ty), issued
by pA. Finally, pB acknowledges the establishment of secure communication by
incrementing the time-stamp 7T, and sending it back to pA (encrypted now by
the mutual session key Kgp). After that step, a secure communication with the
session-key K4 1s established.

For the analysis of this protocol, we must give a set of additional assumptions:
statements about shared keys, jurisdiction, and the freshness of the nonces. These
assumptions (from [3]) are shown in Table 3°.

® The experiments with SETHEO revealed, however, that one assumption essential
for the proofs, pAj= #T. (marked by a 7) is not described in the literature. This



#|Kerberos protocol idealized Kerberos protocol

1 |pA — pS:pA,pB —

2 |pS —pA:{T:, L, Kab,pB, pS — pA: {To,pA 2 pB {Te,pA "= pB} 1, I k.
{T, L, Kap, pPA} i, VKoo

3 pA — pB: {T., L, Kab, pAl,., [pA — pB : {Te, pA 22 pBY s, {Tu, pA 2 pBly.,
{pA, Ta}f\"ab

K,
4 |pB — pA: {T. + 1}k, pB — pA : {T4, pA b pBlx,,

Table 2. The Kerberos Protocol: messages in the original and idealized format

pAE pA " pSIpAE (pSE pA £ pB)
pBE pBIIf—bf pS|pBE (pSE pA & pB)
pSE pA = pS |pAE #T.

pSE pB 2 ps pBE #T.

pSE pA = pB|pBE #T.

pAE #T. (1)

Table 3. The Kerberos Protocol: assumptions for the analysis

The security properties which have to be shown, and which will comprise our

proof tasks 1-4 for the SETHEQ experiments (see Section 4) are:

Kerbl: pAE pA pLU pB
Kerb2: pBE pA pLU pB
Kerb3: pAE pBE pA Py pB
Kerb4: pBE pAE pA pLU pB

As an example for a proof in the BAN logic, we take proof task “Kerb3”%: The

theorem, we want to show is that pAE= pBE pA pLU pB holds, after messages
1-3 have arrived. Before message 3 has arrived, we already know from proof task
“Kerb2” that

pBE pA ¥ pB. (1)

fact has also been detected (independently) in [5]. With this additional assumption,

6

proof task “Kerb4” can be shown.
For comparison, we present the machine-generated proof of this proof task in the
Appendix. For further remarks see Section 4.




By the inference rule “message-meaning” and with message 3 (second part)
of the idealized protocol, we obtain

pBE pAf {To, pA & pBk,, . (2)

Since, by assumption pBE #7T,, we have (if a part of a message is believed
to be fresh, then the entire message is)

pBE #({Tu,pA & pBlk.,). (3)

Finally, by (2) and (3) and “nonce-verification”, we can prove our theorem.
q.e.d.

3 Transformation for SETHEO

The BAN logic is defined by giving an alphabet of atoms (principals and keys),
functions and operators, and inference rules. One way to transform such a logic
into first-order predicate logic is “simulation”: On a meta-level, all formulas of
BAN are represented as first-order terms, and the inference rules are specified
as first-order formulas. Such an approach has been successfully used e.g., for
preparing single-axiom propositional calculi for automated theorem proving [14].

Applying this approach to our BAN logic we obtain the following transfor-
mation:

A unary FOL predicate holds(X) is defined which has the meaning: holds(X)”
1s true, if and only if the BAN-formula X is derivable from other BAN-formulas
using the BAN inference rules.

For example, a BAN-formula (assumption) AE #7; (A believes the freshness
of the nonce Ty) is transformed into:

holds(AE #T5)

Additionally, each BAN inference rule is transformed into a FOL formula.
Given an inference rule of the form

Fi ... Fy
g

we obtain the following formula:
VP, Q,K,... : holds(Fi) A...A holds(F,) — holds(G)

Variables (e.g., P, @, K) which occur in the inference rules become all-quantified
in the transformation. E.g., the nonce-verification rule from Section 2 is written
as:

VP, Q, X : holds(PE #X) A holds(PE QP X) — holds(PE QE X)

" In shorthand, we write - X.



Then, in our approach, the entire input formula for SETHEO 1s of the form
AN ANAAMIA . AMBL ARIA...ARy =T

where the A; are the transformed assumptions, the R; the transformed infer-
ence rules, M; are the transformed messages of the idealized protocol, and T is
the theorem to be shown. A formula of this structure can be easily transformed
into Clausal Normal form (by Skolemization) and then fed into SETHEQ.

However, several additional items are still to be done: performing a syntactic
transformation, since SETHEQ does not accept special symbols or infix opera-
tors in 1ts input, handling of finite sequences of atomic messages which comprise
a compound message, and defining auziliary predicates to implement the above
additions.
Syntactic Transformation. The conversion of the symbols and operators is
straight-forward and shown in Table 1. Since SETHEOQ’s input language (LOP)
1s similar to PROLOG, all constant and function symbols start with a lower-case
letter, all variables start with an upper-case character. An (abbreviated) example
of such a LOP formula (from the Kerberos protocol in Table 2 and Table 3) is
shown in the following Table 4.

/ sk sk s ke ok sk sk sk ke o sk sk ok ok ke o sk sk ke ke ke sk sk sk ke e o sk ok sk sk ok ke o sk sk ke ko o sk sk ke s ok /
/* NAME: kerb-1.1lop */
/% SCCS: 1.1.7  3/12/1996 */
/ sk sk s ke ok sk sk sk ke o sk sk ok ok ke o sk sk ke ke ke sk sk sk ke e o sk ok sk sk ok ke o sk sk ke ko o sk sk ke s ok /
#clausename assumptionl

holds(bel(a,sk(a,s,kas)))<-.

#clausename assumption?2

holds(bel(b,sk(b,s,kbs)))<-.

#clausename message?2
holds(sees(a,encr(cons(ts,cons(sk(a,b,kab),
cons (encr(cons(ts,cons(sk(a,b,kab),nil)),
kbg),nil))) ,kas)))<-.

#clausename message_meaning
holds (bel(P,said(Q,X))) <-
holds (bel(P,sk(Q,P,K))), holds(sees(P,encr(X,K))).

f#iclausename theorem
<-holds(bel(a,sk(a,b,kab))).

Table 4. BAN-formula transformed into SETHEO-notation (An example from the
Kerberos protocol of Section 2)

Sequences. Within the BAN logic, messages can consist of a single atomic



message, or a (finite) sequence of messages enclosed in braces {}. A notation of
such sequences of variable length as well as predicates for accessing, breaking-up
and constructing such sequences have to be defined in first-order logic. For this
prototypical transformation of BAN into FOL, we have defined an additional
function symbol cons with arity two, and a symbol nel, representing the empty
sequence. Then, a message M = {my, ms,..., my,} is represented as the term
cons(my, cons(ma, .. .cons(my, nil) .. ).

Auxiliary predicates to select one message out of such a combined message
M (“e(M)”) and to select a subsequence & = {m;|1 <i<n} (“SC M”) have

been defined as follows:

nl T nel A
VI, T,R:TC R — cons(F,T) C cons(F, R) A
VI, T,R:TC R—TLC cons(F,R)

VX,V 1 X = i(cons(X,Y)) A
VXV, 7 X =u(7Z) = X = t(cons(Y, 7))

4 Experiments and Results

Using the transformation described above, we made experiments with several
well-known protocols, namely the Kerberos protocol, the Secure RPC-handshake,
and the CCITT-509 protocol. For each of the experiments, the idealized proto-
cols, assumptions and the theorems to be proven have been directly taken from
the literature.

Each proof, found by SETHEQO can be converted fully automatic into a
human-readable form, using the tool ILF-SETHEO [21]. Due to space restric-
tion, we only present one proof, namely that of proof task “Kerb3” of the Ker-
beros protocol®. The manual proof of this theorem has be given above in Sec-
tion 2. It can be seen clearly that the structure of SETHEQ’s proof closely
resembles that, found in the literature. Due to the auxiliary predicates which
have been introduced during the transformation, however, the proof gets much
longer and many technical details (e.g., about submessages) are shown. Future
versions of our system will attempt to hide these technical details (see also the
Conclusions).

All four proof tasks concerning the Kerberos protocol could be shown au-
tomatically, using SETHEQ. The results are shown in Table 5. All run-times
have been obtained on a SUN sparc 10 workstation and are given in seconds
(the times are measures with a granularity of 1/60s). In all cases, SETHEO
was started with its default parameters. “msgs” indicates which messages M; of
the idealized protocol (of the form P < M;) have been considered. We also give
the number of clauses of the input formula, the number of Model Elimination
inference ¢ steps for the proof, and the depth in which a proof could be found.

& This piece of IATEX-code has been included exactly as it was produced by ILF-
SETHEO [21]. No manual changes (except one line break) had to be applied.



The run-time consists of the time needed to compile the formula 7., and the
time for the search Tsan. Tior = Te +T5am comprises the total run-time needed
to solve the proof task.

Proof task Kerb3-1 and Kerb4-1 have been generated by not adding the
theorems of proof task 1 and 2 as lemmas to the formula. This resulted in much
longer and deeper proofs. A fifth proof task was constructed according to a
remark in [3]: Using the first three messages of the protocol only, it is not able to

show pAE pBE pA Py pB. As expected, SETHEOQO cannot find a proof for that
task. Unfortunatedly, SETHEQO does not stop saying “no proof”, but attempts
to search for the proof arbitrarily long. This general problem in our approach of
using SETHEO will be discussed in the Conclusions.

Task Theorem|msgs| cl| 1| d|Te[s]|{Tspam[s]|Tto0]s]
Kerb1 pAE pA 2 pB|  2(34]16] 7/0.180.3¢  [0.52
Kerb?2 pBE pA 2 pB| 2,3(35/17| 7[0.21/0.36  |0.57
Kerb3 pAE pBE pA & far pB|2,3,4(37|15| 7| 0.18|0.59 [0.77
Kerb3-1 pAE pBE pA 2 pB|2,3,4|35(31|11] 0.18]81.94 [82.14
Kerb4 pBE pAE pA 2 pB|2,3,4]40(13| 6/0.20[0.29  |0.49
Kerbd-1 pBE pAE pA 2 pB|2,3,4|37|28(12| 0.20]592.55 [592.75
Kerb5 pAE pBE pA =2 pB| 2,339| | | 0.22|- -
RPC1 pBlE pA Tar Bl 1434 1] 2045013 |o.58
RPC2  [pAE pBRh (pA 2 pB, N})| 1-4/34| 4| 3|0.48[0.16  |0.64
RPC2A pB aNg| 1-4|34| 3| 2/0.42(0.15 0.57
RPC3 pBE pAE Ny| 1-4|34| 5| 3|0.45(0.15 0.60
RPC4 pAE pBE (Na, No)| 1-4|34| 8| 4|0.47[0.17  |0.64
CCITT1 pAE pBE Xs| 1-3[34|17| 8]0.31]1.88 2.19
CCITT?2 pBE pAE X.| 1-3|34|14| 7/0.33|0.67 1.00

Table 5. Experimental results for the Kerberos protocol, the RPC handshake, and the
CCITT X.509 protocol.

Similar experiments have also been carried out with the two other proto-
cols, the Andrew Secure RPC-handshake, and the CCITT X.509 protocol. The
Andrew Secure RPC-handshake consists of 4 messages and the CCITT X.509
protocol uses only three messages to establish a secure communication. For de-
tails on these protocols see e.g., [3, 4]. Here again, SETHEO could show all
required proof tasks within a few seconds of run-time. The results are also shown

in Table 5.



5 Conclusions

In this paper, we have described, how SETHEOQO can be applied to verify secu-
rity properties of cryptographic protocols, using the BAN logic. We presented
experimental results on several well-known cryptographic protocols. Looking at
the manual proofs in the literature [3, 4, 5], we could verify our results.

The proof tasks could be solved fully automatic within very short run-times
(up to a few seconds), making our approach feasible for real-world applications.
As a further advantage, the proofs found by SETHEO can be converted into
easy-to-understand natural-language proofs.

The experiments, described in this paper, however, comprise only a first case-
study in this area. Several problems are yet to be solved and many wishes are
still open.

Probably the most severe drawback of our approach is the handling of non-
theorems: if one wants to prove a conjecture which is not true (see e.g., proof-
task 5 of the Kerberos protocol), SETHEO searches forever instead of termi-
nating with the message “Theorem not valid”. Here, additional techniques (e.g.,
Model Checking or disproving techniques) would be helpful to check, if a theo-
rem is not valid, and to give hints why a proof cannot be found. Experiments
with such approaches are planned for the future.

The model of inferencing in the BAN logic has no clear semantics. Our ap-
proach just models the operational semantics of the BAN logic. Extensions of
the BAN logic (e.g., [8, 19, 10]) have been developed to overcome this and other
problems. Future work will attempt to use one of these extended logics for our
approach.

Furthermore, the practical usability of our system can and must be increased
drastically. This e.g. means that SETHEO should be integrated into a user-
friendly system for development and verification of cryptographic protocols. Such
a tool which currently is under development [20] contains a specification lan-
guage for protocols. From this specification and the user-defined assumptions,
all proof tasks can be generated automatically and then fed into SETHEO. Fu-
ture versions will incorporate a graphics-based simulator for protocol runs, and
tool-support for modeling many different kinds of intruders.

On the side of the automated prover SETHEOQO, using a combination of (de-
fault) top-down, backward chaining search with bottom-up processing would be
of interest. Besides the possibility to reduce the search-space for complicated
proof tasks, the bottom-up preprocessor DELTA [18] would allow to draw con-
clusions on the kinds of beliefs which can be deduced. This information can also
be helpful in detecting possible “holes” for intruders.

A second extension to our approach which will be considered in the future
is the transformation of the BAN logic (or extensions thereof) into sorted first-
order predicate logic. The sort structure in the BAN logic is rather simple and
thus allows a very efficient handling within SETHEQ. One of the major ben-
efits will be the automatic checking of the correct sorts in the input formulas
and during reasoning, thus eliminating many possible flaws during a verification
process.



References

1.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

M. Abadi and M. R. Tuttle. A Semantics for a Logic of Authentication. In Proc.
of the Tenth Annual ACM Symp. on Principles of Distributed Computing, pages
201-216. ACM press, 1991.

S. H. Brackin. A HOL Extension of GNY for Automatically Analyzing Crypto-
graphic Protocols. In Proc. IEEF Computer Security Foundations Workshop 1X.
TEEE, 1996.

. M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. In ACM

Operating Systems Review 23(5) / Proceedings of the Twelfth ACM Symposium on
Operating Systems Principles, Dec 1989.

M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM Trans-
actions on Computer Systems, 8(1):18-36, Feb. 1990.

D. Craigen and M. Saaltink. Using EVES to Analyze Authentication Protocols.
Technical Report TR-96-5508-05, ORA Canada, March 1996.

J. Geiger. Formale Methoden zur Verifikation kryptographischer Protokolle. Fort-
geschrittenenpraktikum, Institut fir Informatik, Technische Universitat Munchen,
1995. in German.

Chr. Goller, R. Letz, K. Mayr, and J. Schumann. SETHEO V3.2: Recent Devel-
opments (System Abstract) . In Proc. CADE 12, pages 778-782, June 1994.

L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic
protocols. In Proc. of IEFE Symposium on Security and Privacy, Oakland,
Ca.,USA, pages 234-248. IEEE, 1990.

. M. J. C. Gordon. HOL: A proof generating system for higher-order logic. In

G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Verification
and Synthesis, pages 73—128. Kluwer, 1988.

V. Kessler and G. Wedel. AUTLOG — An Advanced Logic of Authentication.
In Proc. IEFE Computer Security Foundations Workshop IV, pages 90-99. IEEE,
1994.

R. Letz, K. Mayr, and C. Goller. Controlled Integration of the Cut Rule into
Connection Tableau Calculi. Journal Automated Reasoning, (13):297-337, 1994.
R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High-Performance
Theorem Prover. Journal of Automated Reasoning, 8(2):183-212, 1992.

D. W. Loveland. Automated Theorem Proving: a Logical Basis. North—Holland,
1978.

W. W. McCune and L. Wos. Experiments in Automated Deduction with Con-
densed Detachment. Technical report, Argonne National Laboratory, 1991.

C. A. Meadows. Formal verification of Cryptographic Protocols: A Survey. In
Proc. AsiaCrypt, 1994.

Max Moser, Ortrun Ibens, Reinhold Letz, Joachim Steinbach, Christoph Goller,
Johann Schumann, and Klaus Mayr. The Model Elimination Provers SETHEO
and E-SETHEO. special issue of the Journal of Automated Reasoning, 1997. (to
appear).

P. G. Neumann. Computer Related Risks. ACM Press, 1995.

J. Schumann. DELTA — A Bottom-up Preprocessor for Top-Down Theorem
Provers, System Abstract. In CADE 12, 1994.

P. F. Syverson and P. van Oorschot. On Unifying Some Cryptographic Protocol
Logics. In Proc. of the IFEE Comp. Soc. Sympos. on Research in Security and
Privacy, pages 14-28, 1994.



20. Klaus Wagner. SIL: Ein SETHEO-basiertes Werkzeug zur Analyse kryptographis-
cher Protokolle. Fortgeschrittenenpraktikum, Technische Universitat Munchen,
1997. (in preparation).

21. Andreas Wolf and Johann Schumann. ILF-SETHEO: Processing Model Elimi-
nation Proofs for Natural Language Output (System Description). In CADE 1/,
1997. (submitted).

Kerberos Protocol: Proof Task 3

Theorem 1 query.

Proof®. We show directly that'®

query. (4)
Because of message_3
K, K,
F pB« ({{{TS,pA & pB}}Kbs’{{Ta’pA 2 pB}}Kub})' (5)
Because of theorem
query : —F pBE pAE pA pLU pB. (6)
Because of make_singleton
F AE BE C: -+ AE BE (O). (7)

Because of break_up_believed_messages

F AE BE C:—+ AE BE D A CLC D. (8)

Because of submessage
AT ({B,C}):-AC C. (9)
Because of submessage ({A, B}) C ({A4,C}): —B C C. Because of submessage

Kap

() C (). Therefore (pA far pB) C (pA < pB). Hence by (9)

(pA 2 pB)C ({Tu,pA = pBY). (10)
Because of nonce_verification
F AE BE C:—F AE B CA B AE #C. (11)

Because of freshness
F AE #B:—F AE #C A C =(B). (12)

Because of oneof To = «({Ta, pA MLar pB}). Because of assumption 1+ pBE #7T,.
Therefore by (12)

F pBE #({Tu,pA = pBY}). (13)
by Setheo
1% Dye to technical reasons, our prototype always starts the proof with the artificial
symbol query. The real theorem then is shown in line (6).



Because of message_meaning

F AE B C:i—F Aqa {Clp A+ AE BE A (14)

Because of lemma_from_task_2

F pBE pA 2 pB. (15)

Because of sees_components

F Aa Bi—F Aa C A B=4(C). (16)

Because of oneof A = (({B,C}) : —A = (C). Because of oneof {{T.,pA fap
PBY i, = o{{TwpAd ¥ pBYlx,,). Therefore {{Tu,pA ¥ pBlr,, =
V{{{Te, pA 2 pBY s, {{Tw, pA 22 pB}}k., }). Hence by (16) and by (5) F pBa
{{Tu, pA " pB}}x.,. Hence by (14) and by (15) - pBlE pApR ({Ta,pA =2 pB}).
Hence by (11) and by (13) + pBlE pAlE ({Ta,pA MLar pB}). Hence by (8) and by
(10) v pBE pAE (pA Hap pB). Hence by (7) + pBE pAE pA HLap pB. Hence by
(6) query. Thus we have completed the proof of (4).

q.e.d.

This article was processed using the INTpX macro package with LLNCS style



